Cell-specific expression of SERCA, the exogenous Ca2+ transport ATPase, in cardiac myocytes.
نویسندگان
چکیده
We evaluated various constructs to obtain cell-specific expression of the sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) gene in cardiac myocytes after cDNA transfer by means of transfections or infections with adenovirus vectors. Expression of exogenous enhanced green fluorescent protein (EGFP) and SERCA genes was studied in cultured chicken embryo and neonatal rat cardiac myocytes, skeletal and smooth muscle cells, fibroblasts, and hepatocytes. Whereas the cytomegalovirus (CMV) promoter yielded high levels of protein expression in all cells studied, cardiac troponin T (cTnT) promoter segments demonstrated high specificity for cardiac myocytes. Their efficiency for protein expression was lower than that of the CMV promoter, but higher than that of cardiac myosin light chain or beta-myosin heavy chain promoter segments. A double virus system for Cre-dependent expression under control of the CMV promoter and Cre expression under control of a cardiac-specific promoter yielded high protein levels in cardiac myocytes, but only partial cell specificity due to significant Cre expression in hepatocytes. Specific intracellular targeting of gene products was demonstrated in situ by specific immunostaining of exogenous SERCA1 and endogenous SERCA2 and comparative fluorescence microscopy. The -374 cTnT promoter segment was the most advantageous of the promoters studied, producing cell-specific SERCA expression and a definite increase over endogenous Ca2+ -ATPase activity as well as faster removal of cytosolic calcium after membrane excitation. We conclude that analysis of promoter efficiency and cell specificity is of definite advantage when cell-specific expression of exogenous SERCA is wanted in cardiac myocytes after cDNA delivery to mixed cell populations.
منابع مشابه
Cell-specific expression of SERCA, the exogenous Ca transport ATPase, in cardiac myocytes
Ma, Hailun, Carlota M. Sumbilla, Iain K. G. Farrance, Michael G. Klein, and Giuseppe Inesi. Cell-specific expression of SERCA, the exogenous Ca transport ATPase, in cardiac myocytes. Am J Physiol Cell Physiol 286: C556–C564, 2004. First published October 30, 2003; 10.1152/ajpcell.00328.2003.—We evaluated various constructs to obtain cell-specific expression of the sarco(endo)plasmic reticulum C...
متن کاملSarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes.
Transient elevations of cytosolic Ca2+ are a common mechanism of cellular signaling. In striated muscle, the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) plays an important role in terminating Ca2+ transients by returning cytosolic Ca2+ to intracellular stores. Stored Ca2+ can then be released again for subsequent signaling. We down-regulated SERCA2 gene expression in cultured cardiac myocy...
متن کاملTight control of exogenous SERCA expression is required to obtain acceleration of calcium transients with minimal cytotoxic effects in cardiac myocytes.
Collateral effects of exogenous sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA) expression were characterized in neonatal rat and chicken embryo cardiac myocytes, and the conditions required to produce acceleration of Ca(2+) transients with minimal toxicity were established. Cultured myocytes were infected with adenovirus vector carrying the cDNA of wild-type SERCA1, an inactive SERCA1 mutant,...
متن کاملPhenylephrine hypertrophy, Ca2+-ATPase (SERCA2), and Ca2+ signaling in neonatal rat cardiac myocytes.
We endeavored to use a basic and well-controlled experimental system to characterize the extent and time sequence of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) involvement in the development of cardiac hypertrophy, including transcription, protein expression, Ca(2+) transport, and cytoplasmic Ca(2+) signaling. To this end, hypertrophy of neonatal rat cardiac myocytes in culture was obta...
متن کاملCell-specific promoter in adenovirus vector for transgenic expression of SERCA1 ATPase in cardiac myocytes.
Adenovirus-mediated transfer of cDNA encoding the chicken skeletal muscle sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1) yielded selective expression in cultured chick embryo cardiac myocytes under control of a segment (-268 base pair) of the cell-specific cardiac troponin T (cTnT) promoter or nonselective expression in myocytes and fibroblasts under control of a constitutive viral [cytomega...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 286 3 شماره
صفحات -
تاریخ انتشار 2004